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Axisymmetric plate 
is a thin-wall body with a plane (not curved) midle surface in its undeformed state; it can be a circle or circular ring. The load acts in the direction perpendicular to the middle plane, so that the middle plane becomes an axisymmetric curved (skewed) surface when deformed. Deflection w (displacement in the axial direction) is the major parameter of deformation; a rotation angle υ is introduced as a slave parameter of deformation.

Stress tensor corresponds to a general axisymmetric body, with one of the principal stresses (σz) being zero because of the tiny plate dimension  in the axial direction (thickness); the matrix form of the tensor can be written as follows: 
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Systemization of the plates:

With respect to their relative thickness, the plates can be divided into several groups:
a) Thick plates
After deformation the deflections are very small, elongations of radial  fibres are negligible, as well as the membrane stresses. Bendig (normal) stresses are on the same order as shear stresses (similarly to the thick beams) and both flexion and shear loadings should be taken into account. Normal lines of the middle surface do not only rotate but become curved as well. The Mindlin theory is based on the simplifying assumption that these normal lines remain straight but not perpendicular to the middle surface. Not very frequent in technical applications.
b) Thin plates with small deflections 
Shear stresses are negligible in comparison with the normal ones in these plates (τrz ≈ 0), the shear load can be neglected (the common thickness limit is h<R/10). In addition however, the deflection must be as small that the problem remains linear in geometry (the common limit is w<h/4). The Kirchhoff theory of plates assumes that the normal lines of the middle surface remain straight and perpendicular to it; the elongation  of radial fibres is negligible, as well as the membrane stresses. Only bending (normal) stresses are taken into account; they are distributed linearly throughout the plate thickness with zero value in the middle surface. This theory offers the simplest calculations of all the plate theories and is very frequent in technical applications.
c) Thin plates with large deflections 
The stiffness (thickness) of these plates is lower than of those in par. b). The thickness limits cannot be defined exactly, because they depend on the material parameters and load magnitude; the limits are given by the deflection magnitude (h/4<w<5h). The large deformations require a non-linear solution (non-linear geometrical relations under load) and the membrane stresses need to be taken into account as well.
d) Membranes 

They are as thin that their bending stiffness is negligible, they take only tensional load into account (normal stresses uniform throughout the thickness, membrane stress state); the membrane theory of shells (chapter 10) can be used only under condition large displacements (deformed geometry) are taken into account. Again not their thickness, but their relative deflection under load is the conventional limiting quantity (w>5h). 
Kirchhoff theory of thin axisymmetric plates
A typical infinitesimal element and its coordinate system:
[image: image3.jpg]
Basic assumptions
1. The stress and strain states are axisymmetric – the tangential direction is a principal direction (see the figure above).
2. Normal lines of the middle surface remain straight and perpendicular to this surface (see the figure below), consequently cylidrical sections change into  conical ones, and the strains and stresses are distributed linearly throughout the plate thickness.
3. [image: image4.jpg]
4. τrz ≈ 0, the shear stress is negligible from the point of view of failure; however, this stress is necessary to equilibrate the element of the plate.  
5. The stresses perpendicular to the middle surface ((z) are negligible (because of the small plate thickness). 
6. Points in the middle plane show negligible radial displacements (uR = 0), consequently membrane stresses are negligible. 

Relations between the deformation parameters
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Stresses in the infinitesimal element
[image: image8.jpg]
The stresses can be replaced by their resulting distributed line forces and couples on the basis of the following equations of the static equivalence: 
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System of equations used in the solution 

Equations of static equilibrium:
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Geometrical equations:


[image: image14.wmf]dr

d

z

dr

du

r

u

e

-

=

=



[image: image15.wmf]r

z

r

u

t

u

e

-

=

=

 

Constitutive equations:
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The procedure of solution:

Geometrical equations (5) are substituted into the constitutive equations (6), and the results further into the equations of static equivalence (3b). After some manipulations we can obtain:  

[image: image18.wmf](

)

ú

û

ù

ê

ë

é

+

-

=

ú

û

ù

ê

ë

é

+

-

-

=

r

dr

d

B

r

dr

d

Eh

m

r

u

m

u

u

m

u

m

2

3

1

12



[image: image19.wmf](

)

ú

û

ù

ê

ë

é

+

-

=

ú

û

ù

ê

ë

é

+

-

-

=

dr

d

r

B

dr

d

r

Eh

m

t

u

m

u

u

m

u

m

2

3

1

12


In these equations the multiplicand in front of the brackets represents the bending stiffness B of the plate 
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The formulas (7) and a derivative of the formula (7a) can be substituted into the momentum equation of statical equilibrium (4b), and after some manipulations we obtain the differential equation containing the angle υ in the following shape:
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 EMBED Equation.3  [image: image22.wmf]
A general solution  of eq. (9) exists in the following form:
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 EMBED Equation.3  [image: image24.wmf](
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Here  υp  represents a particular integral of the non-homogeneous differential equation (9); its form depends on the form of the function t(r) (distributed line load).
Eq. (9) can be transformed into the following form
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which makes the solution possible by double successive integrations.  
On the basis of eq. (1), a successive integration of eq. (10) gives the relation  for the plate deflection w:
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Typical examples of supports of axisymmetric plates
[image: image27.jpg]
Boundary conditions
can be formulated on the basis of constraints of deformation parameters (supports), external loads (distributed line couples), axisymmetry of the plate middle surface (a circular plate whitout any central hole), or of continuity and smoothness of the middle surface (at the boundaries between individual intervals). 
· Supports: 

· Fixed support: w=0, υ=0=w' .

· Pin or roller support (both are equivalent because of negligible forces acting in the middle plane): w=0.

· Free edge: mr=0

· When a distributed line couple acts on the free (unsupported) edge, the radial moment here is not zero but equals to the magnitude of this couple. 
· A plate without any hole: for r=0 it holds υ=0 => c2=0. 
· If there is a disconuity in loads (in the form  of a support, isolated line force, change in the distributed load character), or a change in the plate thickness, it is necessary to divide the plate into intervals in this location (this is valid except for the plate edges, naturally). Each of these intervals requires a specific differential equation coupled with the other equations by three boundary conditions at each boundary. These boundary conditions are based on the equality of deflections, rotation angles and radial moments at the boundary of the intervals.  
· If an external distributed line couple acts on a circular line defined by its radius (except for the plate edges), a stepwise change occurs in the values of the radial moment; the magnitude of this step equals to the magnitude of the distributed line couple acting here. 
Procedure of solution to a direct problem:

Note: The force equation of statical equilibrium (4a) was not used in the solution. The statical equilibrium in the z axis is then used in evaluation of the distributed line shear force; however, it is easier to formulate this equation in another form, namely for a finite element of the plate separated by a cylidrical section.
1. The plate is divided into intervals; in each of them the shear force must be defined by a single continuous and smooth function, and the plate thickness must be constant.
2. For each of the intervals, a finite element is isolated from the plate as a free body, and the distributed line shear force t(r) is calculated from the z-axis equation of statical equilibrium. 
3. The angle υ(r) can be determined by double consequent integrations of  eq. (11) or by substituting the particular integral υp into eq. (10); deflection w(r) can then be obtained by another integration of the υ(r) function.
4. We formulate the boundary conditions (3 for each of the intervals) and calculate the unknown integration constants in the resulting equations. 
5. By substituting υ(r) into eqs. (7), we can calculate the distributed line moments as functions of the radius r and draw their dependences on the radius.

6. We find the dangerous points of the plate, i.e. extremes (maximum) of the moments expressed as functions of the radius. Extreme stresses in the dangerous points can be calculated from the following formulas:
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7. As the third principal stress σz equals zero, the reduced Tresca stress (valid for a ductile material) equals to the magnitude of the larger one of both the above stresses. This value is then used for calculation of the safety factor. 
8. The deflection function w(r) can be obtained by substitution of the integration constants into eq. (12) (together with the known value wp). For the solution to be valid, the maximum of this function must meet the condition   
w < h/4
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