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System of general elasticity equations 
Generalized Hook’s law
In the course Strength of materials I, problems of elasticity of bars were only solved. To solve stresses and strains in a general 3D body, it is necessary to create and solve a system of general elasticity equations.  Their solution can be found by means of two basic approaches: 
· differential approach – solution to a system of differential equations,
· variational approach – formulation of an energetic quantity and finding its minimum by means of the variational calculus.
Material is assumed to be a homogeneous isotropic linear elastic continuum; its mechanical properties can be described by global elastic parameters (E, μ – characterizing its elastic behaviour) and by other material parameters (σk – yield stress, σPt – ultimate stress, σC – fatigue strength, KIC – fracture toughness, etc., characterizing failure conditions). The necessary differential equations are formulated on the basis of equilibrium of a threefold infinitesimal element.  
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Overview of the most important properties of the stress tensor (revision from the course in Strength of materials I): 
1. It can be expressed in the form of a square matrix 3 x 3.

2. Coordinates of the tensor in any rotated cooordinate system can be calculated from this matrix; they represent stress components in the corresponding planes.  
3. A position can be found among the rotated coordinate systems (different rotated positions of the element), in which all the shear stresses equal zero; the corresponding normal stresses are called principal stresses.
4. The principal directions (directions of principal stresses) are mutually perpendicular; the angle between two principal directions is arbitrary only in the case that the corresponding two principal components are equal. 
5. Principal stresses can be calculated from the characteristic equation of the stress tensor; it is a third order algebraic equation having three real solutions. The coefficients in this equation are stress tensor invariants.
6. A graphical representation of the stress tensor in the Mohr’s plane enables us to calculate minimum and maximum values of the normal and shear stresses easily. 
7. If some of the stress components equal zero or each other, special types of stress states can be defined: biaxial, uniaxial, equibiaxial, hydrostatic, shear, or bar-type stress states.
8. Any stress tensor can be decomposed into its spherical and deviatoric parts. 
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7) Stress state types
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Strain tensor
derivation of geometrical equations
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Properties of the strain tensor 

can be formulated on the basis of analogy among tensors (tensor calculus):

1. It can be expressed in the form of a square matrix 3 x 3.

2. Coordinates of the tensor in any rotated cooordinate system can be calculated from this matrix; they represent strain components in the corresponding planes.  

3. A position can be found among the rotated coordinate systems (different rotated positions of the element), in which all the angular strains equal zero; the corresponding length strains are called principal strains.

4. The principal directions (directions of principal strains) are mutually perpendicular; the angle between two principal directions is arbitrary only in the case that the corresponding two principal components are equal. 

5. Principal strains can be calculated from the characteristic equation of the strain tensor; it is a third order algebraic equation having three real solutions. The coefficients in this equation are strain tensor invariants.

6. A graphical representation of the strain tensor in the Mohr’s plane enables us to calculate minimum and maximum values of the length and angular strains easily. 
7. If some of the strain components equal zero or each other, special types of strain states can be defined: biaxial, equibiaxial and other strain states.

8. Any strain tensor can be decomposed into its spherical (volumetric) and deviatoric (shape) parts.

 1) 
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7)  Strain state types
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Relative volumetric change     e = εx + εy + εz = ε1 + ε2 + ε3 

Basic types of general elasticity equations:
1. Cauchy equations of statical equilibrium of the infinitesuimal element:

a) Inner element:




The element shape is a hexahedron (or cube), the specific volumetric force       in the equations  can be a gravitational, centrifugal, electromagnetic or other force.
b) Boundary element:




The element shape is a tetrahedron with one wall being on the body surface. If the body surface is unloaded, the corresponding pressure p equals zero. 

2. Geometrical equations:

Partial differential equations, relating components of the displacement vector with  components of the strain tensor.

3. Constitutive equations:

They express the mutual relations among the components of stress and strain tensors. In the linear elasticity, these relation are described by the generalized Hooke’s law. 
Generalized Hooke’s law
This law is valid for a homogeneous isotropic linear elastic material (Hookean material).
It can be derived easily (using the superposition principle) on the basis of uniaxial loads in three mutually perpendicular directions. For explicitely expressed strain components it holds: 
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Inverse relations (with explicitely expressed  stresses) can be derived e.g. using Cramer’s rule: (the example below for one of the normal stress components):
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By introducing some new elastic parameters we obtain:

[image: image46.wmf]e

G

x

x

l

e

s

+

=

.

2




[image: image47.wmf]xy

xy

G

g

t

=



[image: image48.wmf]e

G

y

y

l

e

s

+

=

.

2




[image: image49.wmf]xz

xz

G

g

t

=



[image: image50.wmf]e

G

z

z

l

e

s

+

=

.

2




[image: image51.wmf]yz

yz

G

g

t

=


where 
[image: image52.wmf](

)

m

+

=

1

2

E

G

,    
[image: image53.wmf](

)

(

)

m

m

m

l

2

1

1

-

+

=

E

,

[image: image54.wmf]z

y

x

e

e

e

e

+

+

=


Frequently the Hooke’s law is used in its matrix form, or some simplified shapes of the equations can be derived, valid only for plane stress state, plane strain state, or shear stress state. 
Elastic strain energy (=potential energy of the elastic deformation) can be obtained by integration of the strain energy density throughout the volume of the body in question. 

Boundary conditions are necessary for any solution to differential equations. There are two basic types of boundary conditions (BCs): 

· deformational BC (known displacement values prescribed in some points on the surface of the body)

· force BC  - a pressure is prescribed on a part of the body surface. This BC is valid also for any free surface of the body (pressure equals zero). 
Review:

The output values  are indipendent functions of general elasticity, it means: 

· displacements (displacement vector with its components u, v, w), 

· strains (strain tensor Tε with its independent components εx, εy, εz, γxy, γyz, γxz),

· stresses (stress tensor Tσ with its independent components σx, σy, σz, τxy, τyz, τxz).

These 15 unknown functions are to be solved analytically from the system of general elasticity equations, consisting of:

· equations of statical equilibrium of a 3D element – 3 partial differential equations,

· geometrical equations – 6 partial differential equations,

· Hooke’s law – 6 linear algebraic equations. 

The fundamental problem of general elasticity theory
is formulated as the so called


Inputs: geometry, material,supports,loads.

direct problem (inputs (outputs).

Outputs:displacements, stresses,strains. 

Kirchhoff  has proven the uniqueness of the solutions to direct problems in the elasticity theory.  
Inverse (indirect) problem: on the basis of a known output parameter (e.g. allowable stress) some input parameter can be calculated (dimension, the required material strength, allowable load, etc.). The solutions to these problems are not unique, the procedures can be numerically unstable, badly conditioned).
Optimization problem: input parameters are varied with the aim to achieve an extreme value of an optimization quantity (e.g. minimum weight, maximum load-bearing capacity, etc.).
Variants of the solutions to the system of  of general elasticity equations 
differ mutually by the choice of the basic unknown quantities.
Deformational variant:

the procedure continues from displacements to strains and consequently to stresses. This variant is the most frequent in both analytical and numerical (variational) solutions. 
Force variant:

the procedure continues from stresses to strains and consequently to displacements. Very rare applications. It needs some additional equations to ensure the continuity of the displacement functions (compatibility equations). 
Approaches to solutions to the direct problem of the general elasticity theory
Diferential approach




Variational approach
Deformational variant
Force variant

Hybrid variant


Analytical solution





Numerical solution
Analytical solution
Advantages: if there exists a closed-form analytical solution, functional relations among input and output quantities can be expressed explicitely; also the solutions to the inverse and optimization problems are relatively easy.
Disadvantages: analytical solutions can be found for a few problems only.
Numerical solution
Advantages: even very complex problems (from the viewpoint of geometry, material behaviour, etc.) can be solved using up-to-date computational equipment.

Disadvantages: model creation is time-consuming, we do not know any direct relations among the input and output quantities and the results can hardly be generalized; neither inverse nor optimization problems can be solved directly.
Diferencial deformational approach
Geometrical equations
(
Hooke’s law
(
Cauchy equilibrium equations
After substitution of the geometrical equations into the Hooke’s law and having substituted the obtained results into the Cauchy equilibrium equations,  Lamé equations of general elasticity theory (expressed in displacements) can be obtained; their general solution has been never found.
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