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Basic model bodies of general theory of elasticity
1. General body – an analytical solution is not known
2. Axisymmetric body 

An axisymmetric body in the theory of elasticity must give axisymmetric results (stresses, strains, displacements); therefore it needs not only to have an axisymmetric geometry, but its material properties, supports and loads must be axisymmetric as well.

3. Thin-wall body

 











Overview of analytically solvable model bodies
· Rod-like bodies (bars, beams, columns)

· Thick-wall cylindrical and spherical body

· Rotating disc 

· Axisymmetric plate

· Axisymmetric membrane shell 
· Cylindrical momentum shell 

Axisymmetric body
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To keep the axisymmetry of the deformed body as well, the angular strains γrt a γtz must equal zero (see fig.), therefore the t-direction (circumferential) is principal direction of the strain tensor. 

According to the Hooke’s law, zero angular strains correspond with zero shear stresses (τrt = 0 and τtz =0) and the isolated element looks as follows:
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Thick-wall cylindric body
is a special case of the axisymmetric body. At a cylindric body neither radial section can rotate so that all the angular strains are zero, as well as all the shear stresses. Therefore the directions r,t,z are principal directions (of both stress and strain tensors).
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Formulation of equations used for the solution:
The parameters to be calculated are: σt, σr, σz, u, all of them depend on the radius r only.

1. Formulation of the geometrical equations for a cylindric coordinate system. 
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2. Formulation of the conditions of statical equilibrium – only the force equation for the radial direction is needed for the solution.
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For the axial stresses it holds 
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3. For the cylindrical coordinate system  and with explicitely expressed stresses, Hooke’s law can be formulated as follows:
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and after derivation with respect to r and substitution of the geometrical equations we can obtain:

[image: image16.wmf]ú

û

ù

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

÷

ø

ö

ç

è

æ

-

+

-

+

+

=

dr

d

r

u

dr

du

r

dr

u

d

dr

u

d

E

dr

d

z

r

e

m

m

m

s

2

2

2

2

2

1

2

1

1


Equations of Hooke’s law with the explicitely expressed strains 
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we can obtain by subtracting them from each other 
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and substitution of the geometrical equations 
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4. By substitution of eqs.  (2) and (4) into eq. (1) and some matematical manipulations, we can obtain the equation of statical equilibrium expressed by means of the radial displacements in the following shape:
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5. This 2nd order differential equation has its solution in the shape: 

[image: image22.wmf]r

c

r

c

u

2

1

+

=


6. If we return from the displacements back to stresses, we can obtain their radial and circumferential components in the form of the following equations: 
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The following conclusions can be drawn from the analysis of these equations:

· The stress depends on radius  - the dependence is polytropic.
· The stresses are symmetric with respect to  A = (σt + σr)/2
· The difference between stresses σt, σr  decreases with increasing radius.
· The gradient of σt decreases with increasing radius under any load.

· Procedure of the solution to a forward problem:

1. Evaluation of the integration constants in eqs. (7a) and (7b) on the basis of boundary conditions (known radial stresses).
2. Evaluation of the axial stress σz either from the equation of statical equilibrium in the z direction or by using Hooke’s law from a known axial strain.

3. Analysis of the stress distribution, definition of dangerous points. 

4. Calculation of principal stresses in the dangerous point, evaluation of the safety factor by using a reduced stress (based on plasticity criteria).
5. Calculation of the radial displacements – the simplest way is on the basis of the circumferential strain, which can be calculated by means of the Hooke’s law.
Proposal of a cylindrical pressure vessel 

(closed and loaded by inner pressure)
Objective: proposal of the wall thickness of the vessel with a given inner radius r1, loaded by the pressure p1 (with the required safety factor kk).
It holds for the principal stresses: 
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For calculation of the reduced stress we can use Tresca’s plasticity criterion
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The integration constant B in eqs. (7) can be calculated (for the boundary condition of the inner pressure p1) from the formula
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By means of substitution of eqs. (7a) and (7b) with the above constant B into the formula for the reduced stress we obtain the equation, from which the unknown external vessel radius r2 can be calculated
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A direct consequence of this formula is that no pressure vessel can bear a pressure  higher than p1= σallow/2, where the allowable stress depends on the properties of the qiven material and the required safety factor (
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This limitation can be overcome by means of: 
· A better material with a higher yield stress.
· Autofrettage – inducing negative (compression) residual stresses at the inner surface of the vessel by exceeding its yield stress locally.
· Multilayer  vessel with interference between the layers.
Middle surface is curved 


shell





Middle surface is plane (not curved)





in both deformed and undeformed states  - wall (load acting only in the middle surface)





in the undeformed state, but curved in the deformed state  - plate (load acting perpendi-culary to the middle surface)





Stress constant through the thickness - membrane     (momentless) shell theory 





Stress varying throughout the thickness - moment (bending) shell theory 
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meridian section





radial section





cylindric section





meridian section





Consequence of the axisymmetry
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radial section
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displacement of radial  sections





displacement of cylindric  sections
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