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Axisymmetric wall –rotating disc 
[image: image1.emf]It is a thin-wall body with a planar (circular or anular) middle surface, keeping its planarity also in the deformed state. The load is allowed to act in the middle plane only; this condition together with the axisymmetry can be met only by centrifugal forces larger by order  than gravitational forces, which can then be neglected. Practical applications represent high speed rotating disc and annulus. 
The basic geometrical difference from the cylindric thick-wall body is that the wall (disc) is thin (h << r2), which results in the following simplifications:
· A twice infinitesimal element is sufficient to be isolated as a free body (see fig. b)

· The stress state is only two-dimensional (planar - see fig. d).

       [image: image2.jpg]Mozné pri
pripady zatiZeni rotujici sté
ény:

\P“’ 6 (w)
= '
— w ] o
kf) 5}(“ﬂ ' /’%
AN m Mw)
Obr.82 | -8l 9)

- 118 -



[image: image3.jpg]



1. Geometrical equations (for the cylindrical coordinate system) are identical with a cylindrical body:
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2. Formulation of equations of statical equiilibrium – we apply only one force equation for the radial direction, it can be manipulated to obtain the following form:
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It holds 
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for the axial stress, because the stress state is planar here.
3. Hooke’s law will be applied (with the explicitely expressed stresses) in its specific form valid for 2D stress state:
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By derivation with respect to r and substitution of the geometrical equations, the following equation is obtained:
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We subtract both equations of the Hooke’s law  to obtain 
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and by substituting the geometrical equtions we can obtain 
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Then we substitute eqs. (2) and (4) into eq. (1) and after some manipulations we obtain
the following differential equation for radial displacements:
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Eq. (5) differs from the analogical equation valid for  the cylindrical vessel by its right-hand side only – it is a non-homogeneous differential equation.
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The particular integral of the  non-homogeneous differential equation can be found in the following form:
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The resulting equation for radial displacements has the shape

[image: image15.wmf]3

2

2

2

2

1

8

1

r

E

r

c

r

c

u

w

r

m

-

-

+

=


and enables us to determine strains by using the geometrical equations; by substituting the results into the Hooke’s law  and introducing new forms of the integration constants, we can obtain final formulas for stress components in the following form:
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Similarly to the cylindrical body, the directions r,t,z are principal ones; the formulation of boundary conditions for calculation of the integration constants is (analogically to the cylindrical body) based on the loads acting onto the inner and outer surfaces.
[image: image19.jpg]Mozné pri
pripady zatiZeni rotujici sté
ény:

\P“’ 6 (w)
= '
— w ] o
kf) 5}(“ﬂ ' /’%
AN m Mw)
Obr.82 | -8l 9)

- 118 -




The most important formulations of boundary conditions:

1) Free rotating wall – rotating ring
The change in the wall thickness is not constant, it depends on the radius.
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2) Free rotating hollow shaft - "thick" rotating ring

Axial deformation is constrained, which results in non-zero axial stresses as a consequence of transversal contraction; these stresses are positive near the inner surface and negative near the outer surface. Consequently, the axial stresses at the dangerous location (the inner surface) are positive, it holds σz = σ2 > 0 and  these stresses do not influence the reduced stress calculated by using Tresca’s criterion.  
3) Free rotating wall without any hole– rotating disc
4) Free rotating wall with a small hole 
5) Rotating disc with a compressive (tensional) load on the outer surface
6) Free rotating thin ring
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